Teaching Focus

KLA	Mathematics			
Strand	Numbers and Algebra			
Stage	4			
Syllabus Outcome/s	Students \bullet generalise number properties to operate with algebraic expressions (MA4-8NA)			
Lealgebraic techniques to solve simple linear and quadratic equations				
(MA4-10NA)				
- communicates and connects mathematical ideas using appropriate				
terminology, diagrams and symbols (MA4-1WM)		$	$	Lefine and provide examples of different terms associated with algebraic
:---				
expressions, such as polynomial, identity, like terms, constant, etc.				
Revision exercise, also appropriate for Stage 5 consolidation of previous				
skills and introduction to non-linear equations				

The Text

Vedantu. (2020, October 10). CBSE Class 8 Maths Revision Notes Chapter 9 - Algebraic Expressions and Identities. https://www.vedantu.com/revision-notes/cbse-class-8-maths-notes-chapter-9

Text Analysis

Literacy

Text	
Knowledge	Purpose: description. Tenor: technical. Low cohesion with dot points, though some intratextual references
Grammar Knowledge	Mostly simple sentences and fragments. Few compound or complex sentences.
Word Knowledge	Dense with new vocabulary specific to the field of algebra. Several homonyms.
Visual Knowledge	No unusual navigation, tables or images included.

Numeracy

Using Measurement	Comparing degrees of polynomials and likeness of terms
Estimating and calculating with whole numbers	Expansion of algebraic expressions, adding like terms
Recognising and using patterns and relationships	Proving and using identities, recognising patterns when factorising expressions
Using fractions, decimals,	Coefficients of variables and constant terms may be

percentages, rations and rates	fractional.
Using spatial reasoning	Representation of quadratic variables as a square's area and of linear variables as a line. (extended material)
Interpreting statistical information	N/A

Teaching Strategy

Before	Revision of past concepts: we establish a shared knowledge base, with short examples. We then discuss unusual term usage such as the word "literal". Students identify parts of a polynomial
During	Shared reading and Wh-questions to etymologise, disambiguate homonyms and derive identities
After	Students in groups complete Frayer Models for new terminology as a joint construction of extended clozes, soliciting open strategy sharing and summarising learnings

English as Additional Language or Dialect (EAL/D)

Bilingual glossary, encouraging translanguaging, classwide etymological discussion, accessibility of Frayer models, participation through mathematical notation and teacher potentially highlighting Arabic origins of algebra for cultural appreciation

Frayer Model Template. (2021). Kapwing. https://www.kapwing.com/explore/frayer-model-template
pg. 3

Algebraic Expressions and Identities Revision

- Expressions are formed from variables and constants.
- Constant: A symbol having a fixed numerical value. Example: 2, 2/3, 2.1, etc.
- Variable: A symbol which takes various numerical values. Example: x, y, z, etc.
- Algebraic Expression: A combination of constants and variables connected by the sign,,$+- \times$ and \div is called an algebraic expression.
- Terms are added to form expressions. Terms themselves are formed as product of factors.
- Expressions that contain exactly one, two and three terms are called monomials, binomials and trinomials respectively. In general, any expression containing one or more terms with non-zero coefficients (and with variables having non- negative exponents) is called a polynomial.
- Like terms are formed from the same variables and the powers of these variables are the same, too. Coefficients of like terms need not be the same.
- While adding (or subtracting) polynomials, first look for like terms and add (or subtract) them, then handle the unlike terms.
- There are number of situations in which we need to multiply algebraic expressions: for example, in finding area of a rectangle, the sides of which are given as expressions.
- Monomial: An expression containing only one term. Example: $-3,4 x, 3 x y$ etc.
- Binomial: An expression containing two terms. Example: $2 x-3,4 x+3 y, x y-4$, etc.
- Trinomial: An expression containing three terms. Example: $2 x^{2}+3 x y+9,3 x+2 y+5 z$, etc.
- Polynomial: In general, any expression containing one or more terms with non-zero coefficients (and with variables having non-negative exponents). A polynomial may contain any number of terms, one or more than one.
- A monomial multiplied by a monomial always results in a monomial.
- While multiplying a polynomial by a monomial, we multiply every term in the polynomial by the monomial.
- In carrying out the multiplication of a polynomial by a binomial (or trinomial), we multiply term by term, i.e., every term of the polynomial is multiplied by every term in the binomial (or trinomial). Note that in such multiplication, we may get terms in the product which are like and have to be combined.
- An identity is an equality, which is true for all values of the variables in the equality. On the other hand, an equation is true only for certain values of its variables. An equation is not an identity.
- The following are the standard identities:
- $(a+b)^{2}=a^{2}+2 a b+b^{2}$ (I)
- $(a-b)^{2}=a^{2}-2 a b+b^{2} \quad$ (II)
- $(a-b)(a+b)=a^{2}-b^{2}$ (III)
- Another useful identity is $(x+a)(x+b)=x^{2}-(a+b) x+a b$
pg. 4
- The above four identities are useful in carrying out shares and products of algebraic expressions. They also allow easy alternative methods to calculate products of numbers and so on.
- Coefficients: In the term of an expression any of the factors with the sign of the term is called the coefficient of the product of the other factors.
- Terms: Various parts of an algebraic expression which are separated by + and - signs. Example: The expression $4 x+5$ has two terms $4 x$ and 5 .
(i) Constant Term: A term of expression having no literal factor.
(ii) Like term: The term having the same literal factors. Example $2 x y$ and $-4 x y$ are like terms
(iii) Unlike term: The terms having different literal factors. Example: x and $3 x y$ are unlike terms.
- Factors: Each term in an algebraic expression is a product of one or more number(s) and/or literals. These number(s) and/or literal(s) are known as the factor of that term. A constant factor is called numerical factor, while a variable factor is known as a literal factor. The term $4 x$ is the product of its factors 4 and x.

